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A number of practical problems have let to a need for studying con- 

trolled processes in systems with distributed parameters. Butkovskii 

and Lerner [d formulated in its most general form the problem of 

optimal control of processes in such systems and showed that in certain 

cases this problem may be solved by applying Pontriagin’s maximum 

principle 121. Later Butkovskii [3,41 found the optimum conditions for 

the case in which the controlled process is described by the nonlinear 

integral equation 

where Q(P) is a vector function characterizing the state of the con- 

trolled system, m is a vector function which is nonlinear in Q and u in 

the general case, u(S) is an admissible control function, and D is a 

region in m-dimensional Euclidean space. 

In the present note we formulate one type of problem concerning the 

optimal control of processes which are described by systems of quasi- 

linear partial differential equations. Rozonoer’s method [51 is used in 

obtaining the necessary optimum conditions. The article also indicates 

the optimum conditions, sufficient in the local sense. when the process 

is described by a system of linear equations. 

Let the controlled process be described by the equations 

$u. Bu; aui 
Li [pi] _- ~ + bi (z, 1) az + Ci (;e, t) at’ = ri (z, ‘, ‘1, ’ . , ‘,, ‘) (f = 1.. ..n) (1) 
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where the functions bi and ci have continuous second derivatives with 

respect to x and t in the region G (O\<x f 1, O’<t <T), v is a con- 

trolling Parameter which assumes values in the (open or closed) convex 

domain V of some r-dimensional Euclidean space. The functions f i are 

assumed to be continuous in x and t and twice continuously differenti- 

able with respect to ~1, . . . , un and U. 

We shall assume that the functions ui satisfy the additional condi- 

tions (Goursat conditions) 

“i (2V O) = ‘Pi (x)7 ui to* t, = $,i (t) (2) 

where the functions 0; and yti are continuously differentiable and 

satisfy the matching conditions ~~(0) = ~~(0). 

For our class of admissible control functions we shall take the set 

of bounded functions piecewise continuous in x and t and defined in the 

domain G with values in V. 

If the control function V(X, t) has a discontinuity on a line 

parallel to one of the coordinate axes, for example on the line t = a 

v (z, t) = 
Vl b, 4 if O<t<a,O<x<l 

va (2, t) if a<t<T, O<xQl 

where vi(x, t) are continuous functions, then the corresponding solu- 

tion of the problem (1) to (2) in the region 

sequentially. We first solve the problem 

L, [“il = f (x* t* ulr * * *I II*, v1 tx9 l))t ui (I, 0) 

(n<t<a,O<r<l) 

This has a unique solution which is twice 

G may be constructed 

continuously differentiable 

with respect to x and t: ui = uil(z, t) [6. pp.63-671. In like manner 

we find the solution Ui = ‘i’(‘, t) of the problem 

L, IaJ = f (5 t, U1r * * -9 u,, vt (5 m, ui (z, a) = uil (2, a), ui (OP t, = lcli (t) 

(a<t<T,O\(r<I) 

Consequently, we have a continuous solution 

u (I, t) = 
u1 (2, 4 if O<t<a 

2 (I, t) if a<tfT 

corresponding to the discontinuous control function. 

However, on the line of discontinuity t = a the functions ui(r, t) 

do not have continuous derivatives. If the function V(X, t) is regular 

L?, P. 191, then corresponding to this function we have a unique solu- 

tion u(r, t) = {ul, . . . . u,), such that the functions ui(x, t) have 
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continuous first derivatives with respect to x and t and integrable 

second derivatives. In this case the solution of the problem (1) to (2) 

is not unique within the class of continuous functions (see Example 2). 

For this reason we may always assume that to each admissible control 

function V(X, t) there corresponds a unique solution u(x, t) ‘which hi%3 

cobtinuous derivatives with respect to x and t if v(x, t) is regular 

and is continuous if V(X, t) is not regular. 

Let Ai (i = 1, . . . . n) be a given system of real numbers; let ai( 

Pi(‘) and yi(X, t) be given functions continuous in the region G. We 

take the admissible control function V(X, t), denote by 11(x, t) the 

solution of the problem (1) to (2) corresponding to this control func- 

tion, and consider the functional 

where 1 and T are constants appearing in the definition of the region G. 

Among all the admissible control functions, it is required to find a 
control function V(X, t) such that the functional S attains its minimum 

(maximum) value. 

The admissible control function for which a minimum (maximum) of this 

functional is attained will be called min-optimal (max-optimal) with 

respect to S. 

It should be noted, by the way, that a boundary value problem of 

this kind is of great interest from the viewpoint of physical applica- 

tions. It is encountered in the study of gas sorption and desorption 

processes [81, drying processes [91, etc. The presence of the parameter 

u in equations (1) makes it possible to control the process and in many 

cases to select the best operation, which (from the mathematical view- 

point) is equivalent to minimizing or maximizing some functional. In a 

number of cases the problem is reducible to a study of the functional S. 

For example, let the controlled process be described by equations 

(1) with conditions (2) and let it be required to minimize the func- 

tional 

x, t, u, v) dzdt 
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Be introduce the auxiliary variable a,, by means of the equation 

(3) 

and the supplementary conditions 

u (0, t) = u (x, 0) = 0 (4) 

Then the problem reduces to minimizing the functional S = us{ 1 I T), 

defined on the functions uo, ,. ., u,, given by equations (1) and (3) and 

the supplementary conditions (2) and (4). To obtain a solution, we 

introduce the auxiliary functions wi(x, t) by means of the equations 

&u. 
Mi [WJ = Q& - $ @iWJ - $ (C+Wi) = jj (5) 

!J=l 

with the supplementary conditions 

X .2. 

wi (x, I’) = s ai (E) exp is Ci (Ev r) dE 
) 
df - Ai exp ((Ci (Ev1”) de) 

wi(l* $1 = SR,(rl:I,(Z(bi(L.:)h~-~iex*(Sb((1,-~~~!, (i=l,...,n) (6) 
T 5 T 

where the constants Ai and the functions a;(x), Pi(t) and Yi(r, t) are 

taken from the functional S. The system of equations (5) is linear. and 

so are the conditions (6). Therefore, to each admissible control func- 

tion there corresponds a unique vector function 10(x, t) = {VI, . . . . w,} 

which is defined in the region C and satisfies the system of equations 

(5) and the supplementary conditions (6). We set 

We shall say that the control function V(Z, t) satisfies a maximum 

condition if 

H (u (2, t), w (z, t), v (2, 21, 2, tf it=)) sup H (u (x, t), w (2, 0, v, x, f)(v~)(H), 

where the symbol (( = )) represents equality that is valid at all points 

of the reg.ion G except possibly for a set of points that lie on a finite 

number of lines and the zero plane. 

The minimum condition is determined in a similar manner. 

Theorem 1 (Maximum principle). In order that an admissible control 

function Y(X, t) be win-optimal (max-optimal) with respect to S. it 
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must satisfy a maximum (minimum) condition. 

To prove this, we consider the functional 

J [u, w, v] = SSD WiLi [UiI --H (U, W, Up X, t) dr dt 1 
G i=l 

If u = u(x, t) is the solution of the problem (1) to (2) correspond- 

ing to the control function V, then the functional is equal to zero for 

any arbitrary function w = w(x, t). 

Let an admissible control function U(X, t) and the solution U(X, t) 
corresponding to it be min-optimal with respect to S. We shall denote 

by w(x, t) the solution of the problem (5) to (6) corresponding to the 

functions u(x, t) and u(x, t), 

We shall denote by u(x, t) + Au(x, t) and W(X, t) + Aw(x, t) func- 

tions which are solutions of the same problems but correspond to the 

admissible function ~(2, t) + AU, where Au(x, t) is some increment of 

the control function u(x, t). Evidently the increments Aui and Awi will 

satisfy 

and the 

where 

the equations 

Li [A$] = A 2 , M, [Awi] = Ag (i = l,..,, n) 
1 t 

boundary conditions 

Aui (5, 0) = Aldi (0, t) = Awi (2, 2’) = Au+ (2, t) = 0 (6) 

aH tIH (z + AZ, v + Au, z, t) aH (2, V, x, t) -= 
A azi 

- 
azi azi , 2 = (Q,. . *, WJ (9) 

We shall denote by AJ an increment of the functional J. Then, since 

the operators Li are linear. we find 

AJ = J [z + AZ, v + Au] -J [z, v] = i\i (AwiLi [ui] + AwiLi [Aui] + 
G i=l 

+ wiLi [ Aui]] dxdt - 
ss 

[H (z + AZ, v + Au, x, t) - H (z, v, z, t)] dxdt = 0 (IO) 

G 

It is known [lo, p.1961 that for arbitrary functions p(z, t) and 

q(x, t) which are twice piecewise continuously differentiable with re- 

spect to x and t, the following equation (Green’s theorem) 

Cs IpLi 1~1 - QMi [~ll dxdt = SP,i (x, t) dt-‘P,, (x, t) dx 

"G a 

is valid in the region G where a is a contour enclosing the region G, 
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Since the region C is a rectangle, we find 

T 

ss PLi IqI dx’t =I z IPli (2, f) - P,i (0, t)] dt + 
G 0 

Integrating by parts the one-dimensional integrals on the right side 

of this equation, we obtain 

1s T pLi 191 dxdt = [P (1, t) q (2, t)lt+, - T 
[P w q W)l~=O - 

G 

In the last equation we set p = Au;, p = Aw,. Then, by virtue of 

equations (5) and conditions (6) and (8). it follows that 

n 

SD wiLi [AuJ dxdt = - 

G i=l 

$ [AiAui(l, T) + i ai (2) AUK (xv T) dx + 

i=l 0 

+ s’ pi (t) AI+ (I, t) dt + is yi (cc, t) Aui (x, t) dxdt ] + is i ‘l’ Au, (2, t) dx dt 

0 G G {=I a? 

or 
?Z n m 

wiLi [Aui] dxdt = - A1s + fS 2 - Aui (x, z) dx dt 
G f=l % G $=I 

where ds is the increment added to the functional s as 8 rSSUlt of the 

change from the control function v(x, t) to the control function v + Av. 

Moreover. we have 

7% 

AwiLi [ui] dxdt = 

G i=l 

(13) 

In equation (11) we set q = AU;, p = fLwi. Then, by virtue of equa- 

tion (7) and the boundary conditions (8). it follows that 

$S i: AwiLj IAu~I dxdt = Ss ~ A ~ Auidx dt 
G i=l G i=l t 
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On the other hand, equation 

(1 $J AwiLi IAuil dsdt = 1s i A g AWi dx dl 
G i=l G i=l 

al so holds. 

From the last two formulas we find that 

where t denotes a %-dimensional vector with components ul, . . . , u,, 

“1’ ..*. mn and Aaff/azi is determined from formula (9). We apply Taylor’s 
formula to the function H, neglecting all terms of order higher than the 
second in the increments 

H (, + AZ, v + Av, x, t) - H (2, v, 2, t) = H (2, v -t- Av, 2, t) - H (2, v, 2, 4 + 

2n 8H( 2n 
+I2 

i==l 

‘7 va+zAu~ x7 t, Azi+ $ .+$ aaH (2 + QAz, V + Av, X, t) 

t i, J=l 
az,azj 

A2 A2 
* j (I51 

where 0 d 6 < 1. From equation (lo), by virtue of formulas (12) to (151, 

it follows that 

AJ = - aH ‘“;;* x* ‘) Azi dx & + 
G i=l i 

2n 

aH “;,u’ x* t, Azi dxdt - 1s 2 im (2, “at; Av, ‘J, t) A~, dr dt _ 

G id 1 G i=l i 

2n 1 -- 
2 5s I2.l 

@ff(z + eA& v + Av, I, t) 
dZi azj 

AZ ~~ &,dt _ 
i j 

G i. j=l 

- ss H (2, v -I- Av, x, t) - H (z, v, 8, #)I dzdt = 0 

G 

Collecting terms and applying Taylor’s formula to the function 

aH/& i, we obtain 

AS = - 
ss 

[H (z; v f Au, z, t) - H (2, v, x, 41 dzdt + ‘1 (‘1 = rll + rlr) W) 

G 

aH (2, v + Av, x, t) - 
a$ 

aH ‘z;zv’ =* t, A+ &g & 

i 1 
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PH (z + 8 AZ, v + Au, 2, t) _ 

az,azi 
(0 < 81 d 1) 

PH (z + OIA,e, v + Av, x, t) - 
az,azj 3 

AziAzj dx dt 

Formula (16) defines the increment of the functional S 

troi function changes from v(x, t) to v + Au. In order to 

remainder q, we consider the first n equations of (7) and 

auxiliary variables oi; setting 

C?Atl. 
--&,f ciAui = oi 

Then these equations may be represented in the form 

aq dH 
at + b,q = ‘iA5 + A q ri = bici $ 

dCi 
-g- 

From this. by virtue of conditions (6). it follows that 

when the eon- 

estimate the 

introduce the 

1 5 

q(z, t) = ri (z:, 2) Aui (2, T) + A g 
1 

(17) 

(18) 

Since the functions bi and ri are bounded in the region G. and the 

functions aH/bi satisfy a Lipschitz condition with respect to the argu- 

ments uk and vi, we find from (18) 

I oi (5, t) I < i [~~ i I AQz, 4 I + iv, i I Av, (~9 4 l] dz (i = I,.... nf 

0 j=l k=l 

where N, and N, are specified positive constants. Using this estimate, 

from equation (17) we find 

where P is a specified positive constant. Integrating this inequality 

with respect to x from 0 to 1 and summing over all i, we find 

U (t) < A + B i U fz) dz (B = nlPNJ 
0 

U (t) = i i [hi (x, t) 1 dt, 

P 

A z nlN2 
52 

1 Av, (x, t) 1 dx dt 

i=l 0 G k=l 
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We make use of Lemma I of [Il, p. 191, according to which the func- 

tion U(t) will satisfy the inequality 

U (t) < AeB’ 

From this it follows that 

] Auj (x, t) 1 dxdt Q nlPN,e BT 

ss 22 
7 j Au,, (z, t) 1 dxdt 

j=I 0 G li=l 

Consequently, from the inequalities (19) we find 

I Aui (2, 8) I Q RI # $I / Auk (z, 4 I dx dt 

where Rl is a specified positive constant. 

A similar estimate can be found for I~wi(x, t) 1. Consequently 
r 

1 Azi (x,t){I <R 1s 2 1 Auk (2, t) 1 dr dt (i = I,,.., 2n) (20) 
G k==l 

where R is a positive number such that Rlf R. 

Formula (16) for the increment of the functional S and the inequal- 

ities (20) are similar to the corresponding formulas in [51. Con- 

sequently, the validity of the maximum principle we have formulated is 

readily proved by repeating almost literally the proof of Theorem 1 of 

that article. 

Although the theorem we have proved does not provide any sufficient 

conditions for the existence of optimal control functions, it enables 

us to find, among all the solutions of the boundary value problem (1) 

to (2), individual isolated solutions which satisfy the maximum condi- 

tions. In fact, to solve the problem by the maximum principle, we must 

determine 2n f 1 unknowns ui, wi and v from the 2n + 1 equations (l), 

(3) and (H). Consequently, we have a ncomplete” system of equations for 

finding ui, mi and ~1. The first 2n equations are second-order differ- 

ential equations. In solving them, therefore, we shall encounter arbi- 

trary functions which can be eliminated by means of the supplementary 

conditions (2) and (6). We thereby determine the set of isolated solu- 

tions of the boundary value problem (1) to (2) which satisfy the condi- 

tions of the maximum principle. If we find that there are a finite 

number of such solutions and it is clear from physical conditions of 

the problem that optimum control functions exist, then we should expect 

some of these solutions to be optimal. 

In the case where the system of equations (1) is linear 
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k=l 

uk + ‘pi tv) fi = I,..., 7%) w 

the following theorem holds. 

Theorem 2. In order that the control function U(X, t) in the system 
of equations (21) be min-optinal (aax-optimal~ with respect to S in the 
local sense, it is necessary and sufficient that it satisfy a maximum 
(minimum) condition. 

The proof of this theorem is almost literally the same as the proof 
of the corresponding theorem in [51. 

Example i. Let a controlled process be described by the equation 

where v i he control1 ing parameter. with IV/ < 1. It is required to 

find a contAo function tt(.z, t), 0 f x < 2. 0 f t Q 7’. such that for the 
solution of equation (22) that corresponds to this control function and 
satisfies the conditions 

the functional 

U (z, 0) = u (0, t) = 0 (23) 

s= (z- ss 1) u (z, t) dx dt 

00 

should reach a minimum. 

We define the function M(X, t) by means of the equation 

SW aw aw 
-I- m-2 ax at =-2w-b- 1) 

and the snpplementary conditions S(X, T) = w(2, tf = 0. This function 

will be of the form 

w (x, t) = ; a- - 4 (1 _ e2(f-T)) 

We construct the function 

H = u? (- 2u + vf 

By the maximum principle, the optimal control function will be de- 
termined in accordance with the formula 
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1 
v (2, t) = sign -i_ (2eJCF2 - z) (i - ez(‘-*)) (O<xd2,05:tBT) 

or 

v (G 8) = sign (2e”+ - z) 

Here the expression in parentheses is equsl to zero at only one point 
y of the intervsl (0. 2). where y < 1; we hsve 2~*-* - x > 0 if x < y 

and 2eXs2 - x < 0 if z > y. Therefore 

snd consequently the solution of the problem (22) for P = u(x, t) is of 
the form 

u(2, t) = 
{ 
% (1 - e-') (1 - eTst) 
l/% (1 - emet) (&-('-Y) - eex 

ifO<x<yy, O\(ts;T 
-1) if y<xQ2,0<t<T 

On this solution 

S = lj4 I2T + e-” - i] [ys - 4ev+ + 2e”] 

or, if we tslce into 8CCOUnt the fact that 

y =2 2@ 

we find 

(25) 

W) 

S = I/(; [2T + e-ZT - 11 [ya - 2y + 2&-s] 

A direct check will convince us that if in formula (25) the quantity 

S is regarded 8s 8 function of the Variable y, varying over the interval 

(0, 21, then S will reach its minimum st the point y at which equstion 

(26) is S8tiSfied. This means that, 8mong 811 the control functions of 

the form (24), the control function 11(x, t) for which condition (26) is 
satisfied at the point y will give the function81 its minimum value. If 

we apply Theorem 2. we find that this control function is min-optimal. 

Example 2. Let a controlled process be described by the equation 

8% 
--z.z v ax at , IvlGlr O<x<l, Odt<l (27) 

with the supplementary conditions 

a (2, 0) -_ u(0, t) = 0 (W 

It is required to determine the admissible control function for which 

the functional 
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1 1 

s = 
s 

u (2, 1) dx - 
s 

u (I, t) dt 

0 0 

reaches its minimum value, and to find that minimum value of S. 

To find the function W(X, t) we can make use of the equation 

axat = 0 and the supplementary conditions W(X, 1) = x - 1, ~(1. 

1 - t. 

a% 
t) = 

Consequently, W(X, t) = x - t, and from the maximum condition we find 

that 

V (x, t) = - 1 (t> I), v (x, t) = 1 (t < 2) 

Thus, we obtain two equations for finding the function u(x, t) 

a2u 
axat = I (t- x<O), d!?f- - - 1 axat - (t-x>@ w-4 

with the supplementary conditions (28). From this we find that 

where T(X) is an arbitrary differentiable function, with q1(0) = 0. The 

corresponding value of the functional S is - l/3. 

Thus, in the example considered the solution corresponding to the 

optimum control function is a function u(x, t) that depends on an arbi- 

trary function 9, while the value of the functional S is independent of 

q. Therefore, keeping the value of S fixed on U(X, t). we can impose an 

additional condition. For example, we may require the function u(x, t) 
to have continuous derivatives au/& and &/at on the switching line 

.% = t. 

Then 

In the example considered the functional S is independent of the 

arbitrary function q~ appearing in the solution U(X, t), which corre- 

sponds to the regular optimal control function V(X, t). In the general 

case it may depend on arbitrary functions. Therefore. if we wish to 

apply the maximum principle proved above, we should assing to regular 

control functions only continuously differentiable solutions of the 
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Goursat problem with predetermined conditions on the continuity of the 
derivatives. The above method of investigation may be applied to the 
study of optimal processes that can be described by hyperbolic equations 
with supplementary initial conditions and some forms of boundary condi- 
tions. 

Example 3. Let a controlled process be described by the equation 

aau 
L [u] z T@ - Q2 2 = f (2, t, u, v) 

where a2 is a positive constant, v is a controlling parameter, and f is 
continuous in x and t and is twice continuously differentiable with re- 
spect to u and V. Let the function U, determined by this equation, 
satisfy the supplementary conditions 

where (pi(x) and yi(t) are continuously differentiable functions satisfy- 
ing the matching conditions. The class of optimal control functions is 
determined in the same manner as in the problem considered above. We de- 
fine the functional S by the formula 

T 
S = { a (z) a (z, 7’) dz i- 5 fi (f) u f 1, t) dt -I- 5 s 7 (r, t) u (2, t) dx dt 

0 0 c 

In this case the role of the system (3) is played by the equation 

L [WI = w af I au - 7 (q t) 

and the supplementary conditions for the function W(X, t) must be taken 

in the form 

w (3, T) = 0, aw (2, T) / at = a (4, w (0, 1) = 0, w (4 t) = P 0) 

The function H is of the form 

By the same reasoning as we applied to the study of the Goursat prob- 
lem, we can readily establish the validity of Theorems 1 and 2. 
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